Skip to content
Menu
  • Home
  • Lifehacks
  • Popular guidelines
  • Advice
  • Interesting
  • Questions
  • Blog
  • Contacts
Menu

How do you show an equation has only one solution?

Posted on August 24, 2022 by Author

How do you show an equation has only one solution?

A system of linear equations has one solution when the graphs intersect at a point. No solution. A system of linear equations has no solution when the graphs are parallel.

How do you show that a function has at least one solution?

Practically just take f(x)=0 and solve the equation, if it admits solutions you have found the zeros of the function. To show that a function has exactly 1 zero is the same as to show that the function does not cross twice the x-axis y=0 hence we are looking for such f(x)=0 which admits one and only one solution.

How do you show equations?

One way to prove that an equation is true is to start with one side (say, the left-hand side) and to convert it, by a sequence of equality-preserving transformations, into the other side. But remember that a proof must be easy to check, so each step deserves a justification.

How do you show that an equation has two real roots?

Key points For the quadratic equation ax2 + bx + c = 0, the expression b2 – 4ac is called the discriminant. The value of the discriminant shows how many roots f(x) has: – If b2 – 4ac > 0 then the quadratic function has two distinct real roots. – If b2 – 4ac = 0 then the quadratic function has one repeated real root.

READ:   How many miles can a fish swim?

How do you use intermediate value theorem to find solutions?

Solving Intermediate Value Theorem Problems

  1. Define a function y=f(x).
  2. Define a number (y-value) m.
  3. Establish that f is continuous.
  4. Choose an interval [a,b].
  5. Establish that m is between f(a) and f(b).
  6. Now invoke the conclusion of the Intermediate Value Theorem.

What is squeeze theorem in calculus?

The squeeze (or sandwich) theorem states that if f(x)≤g(x)≤h(x) for all numbers, and at some point x=k we have f(k)=h(k), then g(k) must also be equal to them. We can use the theorem to find tricky limits like sin(x)/x at x=0, by “squeezing” sin(x)/x between two nicer functions and ​using them to find the limit at x=0.

How do you check a solution of an equation?

Determine whether a number is a solution to an equation.

  1. Substitute the number for the variable in the equation.
  2. Simplify the expressions on both sides of the equation.
  3. Determine whether the resulting equation is true. If it is true, the number is a solution. If it is not true, the number is not a solution.
READ:   What is considered a wife in the Bible?

How do you show an equation has one real root?

To prove that the equation has at least one real root, we will rewrite the equation as a function, then find a value of x that makes the function negative, and one that makes the function positive. . The function f is continuous because it is the sum or difference of a continuous inverse trig function and a polynomial.

How do you find roots of an equation?

The roots are calculated using the formula, x = (-b ± √ (b² – 4ac) )/2a. Discriminant is, D = b2 – 4ac. If D > 0, then the equation has two real and distinct roots. If D < 0, the equation has two complex roots.

How do you find the number of real roots of an equation?

For the number of positive real roots, look at the polynomial, written in descending order, and count how many times the sign changes from term to term. This value represents the maximum number of positive roots in the polynomial.

How do you find the squeeze theorem?

How many real solutions does $x^7+x^5 +x^3+1=0$ have?

Prove that the equation $x^7+x^5+x^3+1=0$ has exactly one real solution. You should use Rolle’s Theorem at some point in the proof.

READ:   How does hyperkalemia affect repolarization?

How do you prove that an equation has exactly one solution?

Prove using Rolle’s Theorem that an equation has exactly one real solution. Since f (x) = x7+x5+x3+1 is a polynomial then it is continuous over all the real numbers, (−∞,∞). Since f (x) is continuous on (−∞,∞) then it is certainly continuous on [−1,0] and the Intermediate Value Theorem (IVT) applies.

How to prove X7 + x5 + x3 + 1 = 0?

Prove using Rolle’s Theorem that an equation has exactly one real solution. Prove that the equation x7 + x5 + x3 + 1 = 0 has exactly one real solution. You should use Rolle’s Theorem at some point in the proof. Since f(x) = x7 + x5 + x3 + 1 is a polynomial then it is continuous over all the real numbers, ( − ∞, ∞).

Can there be more than one solution to x=5?

For x=5 we get “5−2=4” which is not true, so x=5 is not a solution. For x=9 we get “9−2=4” which is not true, so x=9 is not a solution. In this case x = 6 is the only solution. You might like to practice solving some animated equations. There can be more than one solution.

Popular

  • What money is available for senior citizens?
  • Does olive oil go rancid at room temp?
  • Why does my plastic wrap smell?
  • Why did England keep the 6 counties?
  • What rank is Darth Sidious?
  • What percentage of recruits fail boot camp?
  • Which routine is best for gaining muscle?
  • Is Taco Bell healthier than other fast food?
  • Is Bosnia a developing or developed country?
  • When did China lose Xinjiang?

Pages

  • Contacts
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 | Powered by Minimalist Blog WordPress Theme
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT