Skip to content
Menu
  • Home
  • Lifehacks
  • Popular guidelines
  • Advice
  • Interesting
  • Questions
  • Blog
  • Contacts
Menu

Does the Schrodinger equation apply to massless particles?

Posted on August 19, 2022 by Author

Does the Schrödinger equation apply to massless particles?

The Schrodinger Equation was constructed specifically because massive particles have a different dispersion relation than the simple one obeyed by photons. But if the particle in question has no mass, then there’s no need for any Schrodinger Equation, and one can simply use the classical wave equation.

What is Schrödinger equation for non relativistic particles?

The Schrödinger equation is based on the Planck-Einstein equations, which connect the wave and particle behavior of the quantum particles into each other. The differential equation is obtained by the jointly usage of the Planck-Einstein equations with the non-relativistic energy relation of classical dynamics.

Is Schrödinger equation valid for relativistic particle?

Why is the Schrodinger wave equation not for relativistic particles? Because it is based on Newtonian physics rather than relativistic. It’s just classic kinetic energy + potential. There is no mass energy, no relativistic corrections etc.

What are spinless particles?

READ:   What does equity mean in stock?

It is a quantized version of the relativistic energy–momentum relation. Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. The equation describes all spinless particles with positive, negative, and zero charge.

What does the Schrödinger equation describe?

Essentially a wave equation, the Schrödinger equation describes the form of the probability waves (or wave functions [see de Broglie wave]) that govern the motion of small particles, and it specifies how these waves are altered by external influences.

Is Schrödinger equation Lorentz invariant?

The Schrodinger equation is not Lorentz Invariant, so it cannot be applied to the wave functions of moving particles. By using this knowledge, a Lorentz Invariant form of the Schrodinger equation can be developed that can be applied to the wave functions of moving particles.

Why is the Schrödinger equation not Lorentz invariant?

The Schrödinger equation of one body quantum mechanics is clearly not manifestly Lorentz invariant, not if the wavefunction is treated as a scalar function. This is due to the occurrence of one time derivative but two space derivatives in the equation.

READ:   How long after quitting smoking can I start running?

Popular

  • What money is available for senior citizens?
  • Does olive oil go rancid at room temp?
  • Why does my plastic wrap smell?
  • Why did England keep the 6 counties?
  • What rank is Darth Sidious?
  • What percentage of recruits fail boot camp?
  • Which routine is best for gaining muscle?
  • Is Taco Bell healthier than other fast food?
  • Is Bosnia a developing or developed country?
  • When did China lose Xinjiang?

Pages

  • Contacts
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 | Powered by Minimalist Blog WordPress Theme
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT